做我女朋友好不好套路網(wǎng)站seo高級優(yōu)化技巧
前言
? ? ? ? 最近在學(xué)Transformer,學(xué)了理論的部分之后就開始學(xué)代碼的實現(xiàn),這里是跟著b站的up主的視頻記的筆記,視頻鏈接:19、Transformer模型Encoder原理精講及其PyTorch逐行實現(xiàn)_嗶哩嗶哩_bilibili
正文
? ? ? ? 首先導(dǎo)入所需要的包:
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
? ? ? ? ?關(guān)于Word Embedding,這里以序列建模為例,考慮source sentence、target sentence,構(gòu)建序列,序列的字符以其在詞表中的索引的形式表示。
? ? ? ? 首先使用定義batch_size的大小,并且使用torch.randint()函數(shù)隨機(jī)生成序列長度,這里的src是生成原本的序列,tgt是生成目標(biāo)的序列。
????????以機(jī)器翻譯實現(xiàn)英文翻譯為中文來說,src就是英文句子,tgt就是中文句子,這也就是規(guī)定了要翻譯的英文句子的長度和翻譯出來的句子長度。(舉個例子而已,不用糾結(jié)為什么翻譯要限制句子的長度)
batch_size = 2src_len=torch.randint(2,5,(batch_size,))
tgt_len=torch.randint(2,5,(batch_size,))
? ? ? ? 將生成的src_len、tgt_len輸出:
tensor([2, 3]) 生成的原序列第一個句子長度為2,第二個句子長度為3 tensor([4, 4]) 生成的目標(biāo)序列第一個句子長度為4,第二個句子長度為4
????????因為隨機(jī)生成的,所以每次運行都會有新的結(jié)果,也就是生成的src和tgt兩個序列,其子句的長度每次都是隨機(jī)的,這里改成生成固定長度的序列:
src_len = torch.Tensor([11, 9]).to(torch.int32)
tgt_len = torch.Tensor([10, 11]).to(torch.int32)
?????????將生成的src_len、tgt_len輸出,此時就固定好了序列長度了:
tensor([11, 9], dtype=torch.int32) tensor([10, 11], dtype=torch.int32)
? ? ? ? 接著是要實現(xiàn)單詞索引構(gòu)成的句子,首先定義單詞表的大小和序列的最大長度。
# 單詞表大小
max_num_src_words = 10
max_num_tgt_words = 10# 序列的最大長度
max_src_seg_len = 12
max_tgt_seg_len = 12
? ? ? ? ?以生成原序列為例,使用torch.randint()生成第一個句子和第二個句子,然后放到列表中:
src_seq = [torch.randint(1, max_num_src_words, (L,)) for L in src_len]
[tensor([5, 3, 7, 5, 6, 3, 4, 3]), tensor([1, 6, 3, 1, 1, 7, 4])]
?????????可以發(fā)現(xiàn)生成的兩個序列長度不一樣(因為我們自己定義的時候就是不一樣的),在這里需要使用F.pad()函數(shù)進(jìn)行padding保證序列長度一致:
src_seq = [F.pad(torch.randint(1, max_num_src_words, (L,)), (0, max_src_seg_len-L)) for L in src_len]
[tensor([8, 5, 2, 4, 6, 8, 1, 4, 0, 0, 0, 0]), tensor([5, 5, 5, 3, 7, 9, 3, 0, 0, 0, 0, 0])]
? ? ? ? ?此時已經(jīng)填充為同樣的長度了,但是不同的句子各為一個張量,需要使用torch.cat()函數(shù)把不同句子的tensor轉(zhuǎn)化為二維的tensor,在此之前需要先把每個張量變成二維的,使用torch.unsqueeze()函數(shù):
src_seq = torch.cat([torch.unsqueeze(F.pad(torch.randint(1, max_num_src_words, (L,)),(0, max_src_seg_len-L)), 0) for L in src_len])
tensor([[9, 7, 7, 4, 7, 3, 9, 4, 7, 8, 8, 0],[1, 1, 5, 9, 5, 6, 2, 7, 4, 0, 0, 0]]) tensor([[3, 3, 2, 8, 3, 4, 1, 2, 9, 4, 0, 0],[1, 6, 3, 8, 5, 1, 5, 5, 1, 5, 3, 0]])
? ? ? ? ?這里把tgt的也補(bǔ)充了,得到的就是src和tgt的內(nèi)容各自在一個二維張量里(batch_size,max_seg_len),batch_size也就是句子數(shù),max_seg_len也就是句子的單詞數(shù)(分為src的長度跟tgt兩種)。
? ? ? ? 補(bǔ)充:可以看到上面三次運行出來的結(jié)果都不一樣,因為三次運行的時候,每次都是隨機(jī)生成,所以結(jié)果肯定不一樣,第三次為什么有兩個二維的tensor是因為第三次把tgt的部分也補(bǔ)上去了,所以就有兩個二維的tensor。
? ? ? ? 接下來就是構(gòu)造embedding了,這里nn.Embedding()傳入了兩個參數(shù),第一個是embedding的長度,也就是單詞個數(shù)+1,+1的原因是因為有個0是作為填充的,第二個參數(shù)就是embedding的維度,也就是一個單詞會被映射為多少維度的向量。
? ? ? ? 然后調(diào)用forward,得到我們的src和tgt的embedding
src_embedding_table = nn.Embedding(max_num_src_words+1, model_dim)
tgt_embedding_table = nn.Embedding(max_num_tgt_words+1, model_dim)
src_embedding = src_embedding_table(src_seq)
tgt_embedding = tgt_embedding_table(tgt_seq)
print(src_embedding_table.weight) # 每一行代表一個embedding向量,第0行讓給pad,從第1行到第行分配給各個單詞,單詞的索引是多少就取對應(yīng)的行位置的向量
print(src_embedding) # 根據(jù)src_seq,從src_embedding_table獲取得到的embedding vector,三維張量:batch_size、max_seq_len、model_dim
print(tgt_embedding)
????????此時src_embedding_table.weight的輸出內(nèi)容如下,第一行為填充(0)的向量:
tensor([[-0.3412, ?1.5198, -1.7252, ?0.6905, -0.3832, -0.8586, -2.0788, ?0.3269],
? ? ? ? [-0.5613, ?0.3953, ?1.6818, -2.0385, ?1.1072, ?0.2145, -0.9349, -0.7091],
? ? ? ? [ 1.5881, -0.2389, -0.0347, ?0.3808, ?0.5261, ?0.7253, ?0.8557, -1.0020],
? ? ? ? [-0.2725, ?1.3238, -0.4087, ?1.0758, ?0.5321, -0.3466, -0.9051, -0.8938],
? ? ? ? [-1.5393, ?0.4966, -1.4887, ?0.2795, -1.6751, -0.8635, -0.4689, -0.0827],
? ? ? ? [ 0.6798, ?0.1168, -0.5410, ?0.5363, -0.0503, ?0.4518, -0.3134, -0.6160],
? ? ? ? [-1.1223, ?0.3817, -0.6903, ?0.0479, -0.6894, ?0.7666, ?0.9695, -1.0962],
? ? ? ? [ 0.9608, ?0.0764, ?0.0914, ?1.1949, -1.3853, ?1.1089, -0.9282, -0.9793],
? ? ? ? [-0.9118, -1.4221, -2.4675, -0.1321, ?0.7458, -0.8015, ?0.5114, -0.5023],
? ? ? ? [-1.7504, ?0.0824, ?2.2088, -0.4486, ?0.7324, ?1.8790, ?1.7644, ?1.2731],
? ? ? ? [-0.3791, ?1.9915, -1.0117, ?0.8238, -2.1784, -1.2824, -0.4275, ?0.3202]],
? ? ? ?requires_grad=True)
? ? ? ? src_embedding的輸出結(jié)果如下所示,往前看src_seq的第一個句子前三個為9? 7? 7,往前看第9+1行與第7+1行的向量,就是現(xiàn)在輸出的前3個向量:
tensor([[[-1.7504, 0.0824, 2.2088, -0.4486, 0.7324, 1.8790, 1.7644, 1.2731],[ 0.9608, 0.0764, 0.0914, 1.1949, -1.3853, 1.1089, -0.9282, -0.9793],[ 0.9608, 0.0764, 0.0914, 1.1949, -1.3853, 1.1089, -0.9282, -0.9793],[-1.5393, 0.4966, -1.4887, 0.2795, -1.6751, -0.8635, -0.4689, -0.0827],[ 0.9608, 0.0764, 0.0914, 1.1949, -1.3853, 1.1089, -0.9282, -0.9793],[-0.2725, 1.3238, -0.4087, 1.0758, 0.5321, -0.3466, -0.9051, -0.8938],[-1.7504, 0.0824, 2.2088, -0.4486, 0.7324, 1.8790, 1.7644, 1.2731],[-1.5393, 0.4966, -1.4887, 0.2795, -1.6751, -0.8635, -0.4689, -0.0827],[ 0.9608, 0.0764, 0.0914, 1.1949, -1.3853, 1.1089, -0.9282, -0.9793],[-0.9118, -1.4221, -2.4675, -0.1321, 0.7458, -0.8015, 0.5114, -0.5023],[-0.9118, -1.4221, -2.4675, -0.1321, 0.7458, -0.8015, 0.5114, -0.5023],[-0.3412, 1.5198, -1.7252, 0.6905, -0.3832, -0.8586, -2.0788, 0.3269]],[[-0.5613, 0.3953, 1.6818, -2.0385, 1.1072, 0.2145, -0.9349, -0.7091],[-0.5613, 0.3953, 1.6818, -2.0385, 1.1072, 0.2145, -0.9349, -0.7091],[ 0.6798, 0.1168, -0.5410, 0.5363, -0.0503, 0.4518, -0.3134, -0.6160],[-1.7504, 0.0824, 2.2088, -0.4486, 0.7324, 1.8790, 1.7644, 1.2731],[ 0.6798, 0.1168, -0.5410, 0.5363, -0.0503, 0.4518, -0.3134, -0.6160],[-1.1223, 0.3817, -0.6903, 0.0479, -0.6894, 0.7666, 0.9695, -1.0962],[ 1.5881, -0.2389, -0.0347, 0.3808, 0.5261, 0.7253, 0.8557, -1.0020],[ 0.9608, 0.0764, 0.0914, 1.1949, -1.3853, 1.1089, -0.9282, -0.9793],[-1.5393, 0.4966, -1.4887, 0.2795, -1.6751, -0.8635, -0.4689, -0.0827],[-0.3412, 1.5198, -1.7252, 0.6905, -0.3832, -0.8586, -2.0788, 0.3269],[-0.3412, 1.5198, -1.7252, 0.6905, -0.3832, -0.8586, -2.0788, 0.3269],[-0.3412, 1.5198, -1.7252, 0.6905, -0.3832, -0.8586, -2.0788, 0.3269]]], grad_fn=<EmbeddingBackward>)
? ? ? ? ?同理tgt_embedding的輸出結(jié)果如下所示:
tensor([[[-1.3681, -0.1619, -0.3676, 0.4312, -1.3842, -0.6180, 0.3685, 1.6281],[-1.3681, -0.1619, -0.3676, 0.4312, -1.3842, -0.6180, 0.3685, 1.6281],[-2.6519, -0.8566, 1.2268, 2.6479, -0.2011, -0.1394, -0.2449, 1.0309],[-0.8919, 0.5235, -3.1833, 0.9388, -0.6213, -0.5146, 0.7913, 0.5126],[-1.3681, -0.1619, -0.3676, 0.4312, -1.3842, -0.6180, 0.3685, 1.6281],[-0.4984, 0.2948, -0.2804, -1.1943, -0.4495, 0.3793, -0.1562, -1.0122],[ 0.8976, 0.5226, 0.0286, 0.1434, -0.2600, -0.7661, 0.1225, -0.7869],[-2.6519, -0.8566, 1.2268, 2.6479, -0.2011, -0.1394, -0.2449, 1.0309],[ 2.2026, 1.8504, -0.6285, -0.0996, -0.0994, -0.0828, 0.6004, -0.3173],[-0.4984, 0.2948, -0.2804, -1.1943, -0.4495, 0.3793, -0.1562, -1.0122],[ 0.3637, 0.4256, 0.7674, 1.4321, -0.1164, -0.6032, -0.8182, -0.6119],[ 0.3637, 0.4256, 0.7674, 1.4321, -0.1164, -0.6032, -0.8182, -0.6119]],[[ 0.8976, 0.5226, 0.0286, 0.1434, -0.2600, -0.7661, 0.1225, -0.7869],[-1.0356, 0.8212, 1.0538, 0.4510, 0.2734, 0.3254, 0.4503, 0.1694],[-1.3681, -0.1619, -0.3676, 0.4312, -1.3842, -0.6180, 0.3685, 1.6281],[-0.8919, 0.5235, -3.1833, 0.9388, -0.6213, -0.5146, 0.7913, 0.5126],[-0.4783, -1.5936, 0.5033, 0.3483, -1.3354, 1.4553, -1.1344, -1.9280],[ 0.8976, 0.5226, 0.0286, 0.1434, -0.2600, -0.7661, 0.1225, -0.7869],[-0.4783, -1.5936, 0.5033, 0.3483, -1.3354, 1.4553, -1.1344, -1.9280],[-0.4783, -1.5936, 0.5033, 0.3483, -1.3354, 1.4553, -1.1344, -1.9280],[ 0.8976, 0.5226, 0.0286, 0.1434, -0.2600, -0.7661, 0.1225, -0.7869],[-0.4783, -1.5936, 0.5033, 0.3483, -1.3354, 1.4553, -1.1344, -1.9280],[-1.3681, -0.1619, -0.3676, 0.4312, -1.3842, -0.6180, 0.3685, 1.6281],[ 0.3637, 0.4256, 0.7674, 1.4321, -0.1164, -0.6032, -0.8182, -0.6119]]], grad_fn=<EmbeddingBackward>)
? ? ? ? 實際想要把文本句子嵌入到Embedding中,需要先根據(jù)自己的詞典,將文本信息轉(zhuǎn)化為每個詞在詞典中的位置,然后第0個位置依舊要讓給Padding,得到索引然后構(gòu)建Batch再去構(gòu)造Embedding,以索引為輸入得到每個樣本的Embedding。?
代碼
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F# 句子數(shù)
batch_size = 2# 單詞表大小
max_num_src_words = 10
max_num_tgt_words = 10# 序列的最大長度
max_src_seg_len = 12
max_tgt_seg_len = 12# 模型的維度
model_dim = 8# 生成固定長度的序列
src_len = torch.Tensor([11, 9]).to(torch.int32)
tgt_len = torch.Tensor([10, 11]).to(torch.int32)
print(src_len)
print(tgt_len)#單詞索引構(gòu)成的句子
src_seq = torch.cat([torch.unsqueeze(F.pad(torch.randint(1, max_num_src_words, (L,)),(0, max_src_seg_len-L)), 0) for L in src_len])
tgt_seq = torch.cat([torch.unsqueeze(F.pad(torch.randint(1, max_num_tgt_words, (L,)),(0, max_tgt_seg_len-L)), 0) for L in tgt_len])
print(src_seq)
print(tgt_seq)# 構(gòu)造embedding
src_embedding_table = nn.Embedding(max_num_src_words+1, model_dim)
tgt_embedding_table = nn.Embedding(max_num_tgt_words+1, model_dim)
src_embedding = src_embedding_table(src_seq)
tgt_embedding = tgt_embedding_table(tgt_seq)
print(src_embedding_table.weight)
print(src_embedding)
print(tgt_embedding)
參考
?torch.randint — PyTorch 2.3 documentation
torch.nn.functional.pad — PyTorch 2.3 文檔
F.pad 的理解_domain:luyixian.cn-CSDN博客
嵌入 — PyTorch 2.3 文檔