国产亚洲精品福利在线无卡一,国产精久久一区二区三区,亚洲精品无码国模,精品久久久久久无码专区不卡

當(dāng)前位置: 首頁(yè) > news >正文

lamp 搭建wordpressseo外鏈工具有用嗎

lamp 搭建wordpress,seo外鏈工具有用嗎,安徽合肥做網(wǎng)站,新手學(xué)做網(wǎng)站難嗎針對(duì)圖像的經(jīng)典卷積網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)化史及可視化 針對(duì)圖像的經(jīng)典卷積網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)化史及可視化(續(xù))P181--MobileNet【2017】模型結(jié)構(gòu)及創(chuàng)新性說明模型結(jié)構(gòu)代碼MobileNet V1版本MobileNet V2版本MobileNet V3 版本Small版本Large版本 P182--EfficientNet【2019】…

針對(duì)圖像的經(jīng)典卷積網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)化史及可視化

  • 針對(duì)圖像的經(jīng)典卷積網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)化史及可視化(續(xù))
    • P181--MobileNet【2017】
      • 模型結(jié)構(gòu)及創(chuàng)新性說明
      • 模型結(jié)構(gòu)代碼
        • MobileNet V1版本
        • MobileNet V2版本
        • MobileNet V3 版本
          • Small版本
          • Large版本
    • P182--EfficientNet【2019】
      • 模型結(jié)構(gòu)及創(chuàng)新性說明
      • 模型結(jié)構(gòu)代碼
        • B1--B7版本

運(yùn)行系統(tǒng):macOS Sequoia 15.0
Python編譯器:PyCharm 2024.1.4 (Community Edition)
Python版本:3.12
TensorFlow版本:2.17.0
Pytorch版本:2.4.1

往期鏈接:

1-56-1011-2021-3031-4041-50
51-60:函數(shù)61-70:類71-80:編程范式及設(shè)計(jì)模式
81-90:Python編碼規(guī)范91-100:Python自帶常用模塊-1
101-105:Python自帶模塊-2106-110:Python自帶模塊-3
111-115:Python常用第三方包-頻繁使用116-120:Python常用第三方包-深度學(xué)習(xí)
121-125:Python常用第三方包-爬取數(shù)據(jù)126-130:Python常用第三方包-為了樂趣
131-135:Python常用第三方包-拓展工具1136-140:Python常用第三方包-拓展工具2

Python項(xiàng)目實(shí)戰(zhàn)

141-145146-150151-155156-160161-165166-170171-175176-180

針對(duì)圖像的經(jīng)典卷積網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)化史及可視化(續(xù))

P181–MobileNet【2017】

模型結(jié)構(gòu)及創(chuàng)新性說明

MobileNet是一系列為移動(dòng)和嵌入式視覺應(yīng)用設(shè)計(jì)的輕量級(jí)卷積神經(jīng)網(wǎng)絡(luò)。以下是MobileNet各個(gè)版本的的主要特點(diǎn):

(1)MobileNetV1版本

主要特點(diǎn)

  • 引入深度可分離卷積(Depthwise Separable Convolution)
  • 使用寬度乘子(Width Multiplier)和分辨率乘子(Resolution Multiplier)調(diào)整模型大小和復(fù)雜度

創(chuàng)新點(diǎn)

  • 深度可分離卷積將標(biāo)準(zhǔn)卷積分解為深度卷積和逐點(diǎn)卷積,大大減少了計(jì)算量
  • 使用ReLU6作為激活函數(shù),有利于低精度計(jì)算

(2)MobileNetV2版本

主要特點(diǎn)

  • 引入倒置殘差結(jié)構(gòu)(Inverted Residual Structure)
  • 設(shè)計(jì)線性瓶頸(Linear Bottleneck)

創(chuàng)新點(diǎn)

  • 倒置殘差結(jié)構(gòu)先擴(kuò)展通道數(shù),再做深度卷積,最后壓縮回原來的通道數(shù)
  • 去掉了最后一個(gè)ReLU,使用線性激活,有助于保留低維特征

(3)MobileNetV3

主要特點(diǎn)

  • 網(wǎng)絡(luò)結(jié)構(gòu)搜索(NAS)優(yōu)化的網(wǎng)絡(luò)架構(gòu)
  • 引入新的激活函數(shù):h-swish
  • 集成Squeeze-and-Excitation (SE) 模塊
  • 提供Small和Large兩個(gè)版本

創(chuàng)新點(diǎn)

  • 使用NAS自動(dòng)搜索最優(yōu)網(wǎng)絡(luò)結(jié)構(gòu)
  • h-swish激活函數(shù)提高了精度,同時(shí)計(jì)算效率高
  • SE模塊增強(qiáng)了特征的表達(dá)能力
  • 優(yōu)化了網(wǎng)絡(luò)的首尾層,進(jìn)一步提高效率

模型結(jié)構(gòu)代碼

MobileNet V1版本
import tensorflow as tf
from tensorflow.keras import layers, modelsdef depthwise_conv_block(inputs, pointwise_conv_filters, alpha,depth_multiplier=1, strides=(1, 1), block_id=1):"""Adds a depthwise convolution block.A depthwise convolution block consists of a depthwise conv,batch normalization, ReLU6, pointwise convolution,batch normalization and ReLU6 activation."""channel_axis = -1pointwise_conv_filters = int(pointwise_conv_filters * alpha)x = layers.DepthwiseConv2D((3, 3),padding='same',depth_multiplier=depth_multiplier,strides=strides,use_bias=False,name='conv_dw_%d' % block_id)(inputs)x = layers.BatchNormalization(axis=channel_axis, name='conv_dw_%d_bn' % block_id)(x)x = layers.ReLU(6., name='conv_dw_%d_relu' % block_id)(x)x = layers.Conv2D(pointwise_conv_filters, (1, 1),padding='same',use_bias=False,strides=(1, 1),name='conv_pw_%d' % block_id)(x)x = layers.BatchNormalization(axis=channel_axis, name='conv_pw_%d_bn' % block_id)(x)return layers.ReLU(6., name='conv_pw_%d_relu' % block_id)(x)def MobileNetV1(input_shape=(224, 224, 3),alpha=1.0,depth_multiplier=1,dropout=1e-3,classes=1000):"""Instantiates the MobileNet architecture.Arguments:input_shape: Optional shape tuple, to be specified if you wouldlike to use a model with an input img resolution that is not(224, 224, 3).alpha: Controls the width of the network. This is known as thewidth multiplier in the MobileNet paper.- If `alpha` < 1.0, proportionally decreases the numberof filters in each layer.- If `alpha` > 1.0, proportionally increases the numberof filters in each layer.- If `alpha` = 1, default number of filters from the paperare used at each layer.depth_multiplier: Depth multiplier for depthwise convolution.This is called the resolution multiplier in the MobileNet paper.dropout: Dropout rate.classes: Optional number of classes to classify images into.Returns:A Keras model instance."""img_input = layers.Input(shape=input_shape)x = layers.Conv2D(int(32 * alpha), (3, 3),strides=(2, 2),padding='same',use_bias=False,name='conv1')(img_input)x = layers.BatchNormalization(axis=-1, name='conv1_bn')(x)x = layers.ReLU(6., name='conv1_relu')(x)x = depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)x = depthwise_conv_block(x, 128, alpha, depth_multiplier, strides=(2, 2), block_id=2)x = depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)x = depthwise_conv_block(x, 256, alpha, depth_multiplier, strides=(2, 2), block_id=4)x = depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)x = depthwise_conv_block(x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6)x = depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)x = depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)x = depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)x = depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)x = depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)x = depthwise_conv_block(x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12)x = depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)x = layers.GlobalAveragePooling2D()(x)x = layers.Reshape((1, 1, int(1024 * alpha)))(x)x = layers.Dropout(dropout, name='dropout')(x)x = layers.Conv2D(classes, (1, 1),padding='same',name='conv_preds')(x)x = layers.Reshape((classes,), name='reshape_2')(x)x = layers.Activation('softmax', name='act_softmax')(x)model = models.Model(img_input, x, name='mobilenet_v1')return model# 創(chuàng)建MobileNet V1模型
model = MobileNetV1(input_shape=(224, 224, 3), classes=1000)# 打印模型摘要
model.summary()

可以通過調(diào)整alpha參數(shù)來創(chuàng)建不同大小的MobileNetV1模型:

custom_model = MobileNetV1(input_shape=(224, 224, 3), classes=10, alpha=0.75)
custom_model.summary()

這將創(chuàng)建一個(gè)稍微窄一些(alpha=0.75)的MobileNet模型,用于10類分類任務(wù)。

MobileNet V2版本
import tensorflow as tf
from tensorflow.keras import layers, modelsdef inverted_residual_block(inputs, filters, stride, expand_ratio, alpha):input_channels = inputs.shape[-1]pointwise_filters = int(filters * alpha)# Expansion phasex = layers.Conv2D(int(input_channels * expand_ratio), kernel_size=1, padding='same', use_bias=False)(inputs)x = layers.BatchNormalization()(x)x = layers.ReLU(6.)(x)# Depthwise Convolutionx = layers.DepthwiseConv2D(kernel_size=3, strides=stride, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = layers.ReLU(6.)(x)# Projectionx = layers.Conv2D(pointwise_filters, kernel_size=1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)# Residual connection if possibleif stride == 1 and input_channels == pointwise_filters:return layers.Add()([inputs, x])return xdef MobileNetV2(input_shape=(224, 224, 3), num_classes=1000, alpha=1.0, include_top=True):inputs = layers.Input(shape=input_shape)# First Convolution Layerx = layers.Conv2D(int(32 * alpha), kernel_size=3, strides=(2, 2), padding='same', use_bias=False)(inputs)x = layers.BatchNormalization()(x)x = layers.ReLU(6.)(x)# Inverted Residual Blocksx = inverted_residual_block(x, filters=16, stride=1, expand_ratio=1, alpha=alpha)x = inverted_residual_block(x, filters=24, stride=2, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=24, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=32, stride=2, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=32, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=32, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=64, stride=2, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=64, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=64, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=64, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=96, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=96, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=96, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=160, stride=2, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=160, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=160, stride=1, expand_ratio=6, alpha=alpha)x = inverted_residual_block(x, filters=320, stride=1, expand_ratio=6, alpha=alpha)# Last Convolution Layerx = layers.Conv2D(int(1280 * alpha), kernel_size=1, use_bias=False)(x)x = layers.BatchNormalization()(x)x = layers.ReLU(6.)(x)if include_top:x = layers.GlobalAveragePooling2D()(x)x = layers.Dense(num_classes, activation='softmax')(x)model = models.Model(inputs, x, name='MobileNetV2')return model# 創(chuàng)建MobileNet V2模型
model = MobileNetV2(input_shape=(224, 224, 3), num_classes=1000)# 打印模型摘要
model.summary()
MobileNet V3 版本
Small版本
import tensorflow as tf
from tensorflow.keras import layers, modelsclass HSwish(layers.Layer):def call(self, x):return x * tf.nn.relu6(x + 3) / 6class HSigmoid(layers.Layer):def call(self, x):return tf.nn.relu6(x + 3) / 6def squeeze_excite_block(inputs, se_ratio=0.25):x = layers.GlobalAveragePooling2D()(inputs)filters = inputs.shape[-1]x = layers.Dense(max(1, int(filters * se_ratio)), activation='relu')(x)x = layers.Dense(filters, activation=HSigmoid())(x)x = layers.Reshape((1, 1, filters))(x)return layers.multiply([inputs, x])def bneck(inputs, out_channels, exp_channels, kernel_size, stride, se_ratio, activation, alpha=1.0):x = layers.Conv2D(int(exp_channels * alpha), 1, padding='same', use_bias=False)(inputs)x = layers.BatchNormalization()(x)x = activation(x)x = layers.DepthwiseConv2D(kernel_size, stride, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = activation(x)if se_ratio:x = squeeze_excite_block(x, se_ratio)x = layers.Conv2D(int(out_channels * alpha), 1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)if stride == 1 and inputs.shape[-1] == int(out_channels * alpha):return layers.Add()([inputs, x])return xdef MobileNetV3Small(input_shape=(224, 224, 3), num_classes=1000, alpha=1.0, include_top=True):inputs = layers.Input(shape=input_shape)x = layers.Conv2D(16, 3, strides=2, padding='same', use_bias=False)(inputs)x = layers.BatchNormalization()(x)x = HSwish()(x)x = bneck(x, 16, 16, 3, 2, 0.25, layers.ReLU(), alpha)x = bneck(x, 24, 72, 3, 2, None, layers.ReLU(), alpha)x = bneck(x, 24, 88, 3, 1, None, layers.ReLU(), alpha)x = bneck(x, 40, 96, 5, 2, 0.25, HSwish(), alpha)x = bneck(x, 40, 240, 5, 1, 0.25, HSwish(), alpha)x = bneck(x, 40, 240, 5, 1, 0.25, HSwish(), alpha)x = bneck(x, 48, 120, 5, 1, 0.25, HSwish(), alpha)x = bneck(x, 48, 144, 5, 1, 0.25, HSwish(), alpha)x = bneck(x, 96, 288, 5, 2, 0.25, HSwish(), alpha)x = bneck(x, 96, 576, 5, 1, 0.25, HSwish(), alpha)x = bneck(x, 96, 576, 5, 1, 0.25, HSwish(), alpha)x = layers.Conv2D(int(576 * alpha), 1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = HSwish()(x)x = layers.GlobalAveragePooling2D()(x)x = layers.Reshape((1, 1, int(576 * alpha)))(x)x = layers.Conv2D(int(1024 * alpha), 1, padding='same')(x)x = HSwish()(x)if include_top:x = layers.Conv2D(num_classes, 1, padding='same', activation='softmax')(x)x = layers.Reshape((num_classes,))(x)model = models.Model(inputs, x, name='MobileNetV3Small')return model# 創(chuàng)建MobileNet V3 Small模型
model = MobileNetV3Small(input_shape=(224, 224, 3), num_classes=1000)# 打印模型摘要
model.summary()
Large版本
import tensorflow as tf
from tensorflow.keras import layers, modelsclass HSwish(layers.Layer):def call(self, x):return x * tf.nn.relu6(x + 3) / 6class HSigmoid(layers.Layer):def call(self, x):return tf.nn.relu6(x + 3) / 6def squeeze_excite_block(inputs, se_ratio=0.25):x = layers.GlobalAveragePooling2D()(inputs)filters = inputs.shape[-1]x = layers.Dense(max(1, int(filters * se_ratio)), activation='relu')(x)x = layers.Dense(filters, activation=HSigmoid())(x)x = layers.Reshape((1, 1, filters))(x)return layers.multiply([inputs, x])def bneck(inputs, out_channels, exp_channels, kernel_size, stride, se_ratio, activation, alpha=1.0):x = layers.Conv2D(int(exp_channels * alpha), 1, padding='same', use_bias=False)(inputs)x = layers.BatchNormalization()(x)x = activation(x)x = layers.DepthwiseConv2D(kernel_size, stride, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = activation(x)if se_ratio:x = squeeze_excite_block(x, se_ratio)x = layers.Conv2D(int(out_channels * alpha), 1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)if stride == 1 and inputs.shape[-1] == int(out_channels * alpha):return layers.Add()([inputs, x])return xdef MobileNetV3Large(input_shape=(224, 224, 3), num_classes=1000, alpha=1.0, include_top=True):inputs = layers.Input(shape=input_shape)x = layers.Conv2D(16, 3, strides=2, padding='same', use_bias=False)(inputs)x = layers.BatchNormalization()(x)x = HSwish()(x)x = bneck(x, 16, 16, 3, 1, None, layers.ReLU(), alpha)x = bneck(x, 24, 64, 3, 2, None, layers.ReLU(), alpha)x = bneck(x, 24, 72, 3, 1, None, layers.ReLU(), alpha)x = bneck(x, 40, 72, 5, 2, 0.25, layers.ReLU(), alpha)x = bneck(x, 40, 120, 5, 1, 0.25, layers.ReLU(), alpha)x = bneck(x, 40, 120, 5, 1, 0.25, layers.ReLU(), alpha)x = bneck(x, 80, 240, 3, 2, None, HSwish(), alpha)x = bneck(x, 80, 200, 3, 1, None, HSwish(), alpha)x = bneck(x, 80, 184, 3, 1, None, HSwish(), alpha)x = bneck(x, 80, 184, 3, 1, None, HSwish(), alpha)x = bneck(x, 112, 480, 3, 1, 0.25, HSwish(), alpha)x = bneck(x, 112, 672, 3, 1, 0.25, HSwish(), alpha)x = bneck(x, 160, 672, 5, 2, 0.25, HSwish(), alpha)x = bneck(x, 160, 960, 5, 1, 0.25, HSwish(), alpha)x = bneck(x, 160, 960, 5, 1, 0.25, HSwish(), alpha)x = layers.Conv2D(int(960 * alpha), 1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = HSwish()(x)x = layers.GlobalAveragePooling2D()(x)x = layers.Reshape((1, 1, int(960 * alpha)))(x)x = layers.Conv2D(int(1280 * alpha), 1, padding='same')(x)x = HSwish()(x)if include_top:x = layers.Conv2D(num_classes, 1, padding='same', activation='softmax')(x)x = layers.Reshape((num_classes,))(x)model = models.Model(inputs, x, name='MobileNetV3Large')return model# 創(chuàng)建MobileNet V3 Large模型
model = MobileNetV3Large(input_shape=(224, 224, 3), num_classes=1000)# 打印模型摘要
model.summary()

P182–EfficientNet【2019】

模型結(jié)構(gòu)及創(chuàng)新性說明

EfficientNet是由Google研究人員在2019年提出的一系列卷積神經(jīng)網(wǎng)絡(luò)模型,旨在提高模型效率和準(zhǔn)確性。以下是EfficientNet的主要特點(diǎn):

模型結(jié)構(gòu)

  • 基于MobileNetV2的倒置殘差結(jié)構(gòu)
  • 使用Squeeze-and-Excitation (SE) 塊
  • 采用復(fù)合縮放方法

創(chuàng)新性:

  • 提出了復(fù)合縮放方法,同時(shí)縮放網(wǎng)絡(luò)的寬度、深度和分辨率
  • 通過神經(jīng)架構(gòu)搜索(NAS)優(yōu)化基礎(chǔ)網(wǎng)絡(luò)結(jié)構(gòu)
  • 在同等計(jì)算資源下,實(shí)現(xiàn)了更高的準(zhǔn)確率

模型結(jié)構(gòu)代碼

B0版本

import matplotlib.pyplot as plt
import tensorflow as tf
from keras.utils import plot_model
from tensorflow.keras import layers, models# macos系統(tǒng)顯示中文
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']def swish(x):return x * tf.nn.sigmoid(x)def se_block(inputs, se_ratio):channels = inputs.shape[-1]x = layers.GlobalAveragePooling2D()(inputs)x = layers.Dense(max(1, int(channels * se_ratio)), activation=swish)(x)x = layers.Dense(channels, activation='sigmoid')(x)return layers.Multiply()([inputs, x])def mbconv_block(inputs, out_channels, expand_ratio, stride, kernel_size, se_ratio):channels = inputs.shape[-1]x = inputs# Expansion phaseif expand_ratio != 1:expand_channels = channels * expand_ratiox = layers.Conv2D(expand_channels, 1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = layers.Activation(swish)(x)# Depthwise Convx = layers.DepthwiseConv2D(kernel_size, stride, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = layers.Activation(swish)(x)# Squeeze and Excitationif se_ratio:x = se_block(x, se_ratio)# Output phasex = layers.Conv2D(out_channels, 1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)if stride == 1 and channels == out_channels:x = layers.Add()([inputs, x])return xdef efficientnet(width_coefficient, depth_coefficient, resolution, dropout_rate):base_architecture = [# expansion, channels, repeats, stride, kernel_size[1, 16, 1, 1, 3],[6, 24, 2, 2, 3],[6, 40, 2, 2, 5],[6, 80, 3, 2, 3],[6, 112, 3, 1, 5],[6, 192, 4, 2, 5],[6, 320, 1, 1, 3]]inputs = layers.Input(shape=(resolution, resolution, 3))x = layers.Conv2D(32, 3, strides=2, padding='same', use_bias=False)(inputs)x = layers.BatchNormalization()(x)x = layers.Activation(swish)(x)for i, (expansion, channels, repeats, stride, kernel_size) in enumerate(base_architecture):channels = int(channels * width_coefficient)repeats = int(repeats * depth_coefficient)for j in range(repeats):x = mbconv_block(x, channels, expansion, stride if j == 0 else 1, kernel_size, se_ratio=0.25)x = layers.Conv2D(1280, 1, padding='same', use_bias=False)(x)x = layers.BatchNormalization()(x)x = layers.Activation(swish)(x)x = layers.GlobalAveragePooling2D()(x)if dropout_rate > 0:x = layers.Dropout(dropout_rate)(x)outputs = layers.Dense(1000, activation='softmax')(x)model = tf.keras.Model(inputs, outputs)return model# EfficientNet-B0 configuration
def efficientnet_b0():return efficientnet(width_coefficient=1.0,depth_coefficient=1.0,resolution=224,dropout_rate=0.2)# Create the model
model_b0 = efficientnet_b0()# Print model summary
model_b0.summary()# 將模型結(jié)構(gòu)輸出到pdf
plot_model(model_b0, to_file='model_b0.pdf', show_shapes=True,show_layer_names=True)
B1–B7版本
def efficientnet_b1():return efficientnet(width_coefficient=1.0, depth_coefficient=1.1, resolution=240, dropout_rate=0.2)def efficientnet_b2():return efficientnet(width_coefficient=1.1, depth_coefficient=1.2, resolution=260, dropout_rate=0.3)def efficientnet_b3():return efficientnet(width_coefficient=1.2, depth_coefficient=1.4, resolution=300, dropout_rate=0.3)def efficientnet_b4():return efficientnet(width_coefficient=1.4, depth_coefficient=1.8, resolution=380, dropout_rate=0.4)def efficientnet_b5():return efficientnet(width_coefficient=1.6, depth_coefficient=2.2, resolution=456, dropout_rate=0.4)def efficientnet_b6():return efficientnet(width_coefficient=1.8, depth_coefficient=2.6, resolution=528, dropout_rate=0.5)def efficientnet_b7():return efficientnet(width_coefficient=2.0, depth_coefficient=3.1, resolution=600, dropout_rate=0.5)
http://m.aloenet.com.cn/news/35533.html

相關(guān)文章:

  • 怎么推廣網(wǎng)站建設(shè)業(yè)務(wù)百度醫(yī)生
  • 做網(wǎng)站都有什么項(xiàng)目網(wǎng)絡(luò)營(yíng)銷推廣要求
  • 建設(shè)公司營(yíng)銷網(wǎng)站優(yōu)化落實(shí)新十條措施
  • 屬于網(wǎng)站的管理 更新 維護(hù)微信營(yíng)銷軟件手機(jī)版
  • 網(wǎng)站專題頁(yè)怎么做百度收錄關(guān)鍵詞
  • 中鐵三局招聘信息2022關(guān)鍵詞seo優(yōu)化公司
  • html5做網(wǎng)站鏈接范例網(wǎng)站推廣100種方法
  • 中國(guó)建設(shè)銀行安徽分行網(wǎng)站推廣什么軟件可以長(zhǎng)期賺錢
  • 珍島信息技術(shù)有限公司做網(wǎng)站服務(wù)網(wǎng)上營(yíng)銷方式和方法
  • 直播網(wǎng)站開發(fā)核心技術(shù)如何做營(yíng)銷策劃方案
  • 小企業(yè)網(wǎng)站建設(shè)怎樣網(wǎng)絡(luò)優(yōu)化工程師騙局
  • 上傳網(wǎng)站的三種方法網(wǎng)絡(luò)營(yíng)銷工程師
  • 做網(wǎng)站申請(qǐng)什么商標(biāo)seo咨詢服務(wù)價(jià)格
  • 小說網(wǎng)站虛擬主機(jī)網(wǎng)絡(luò)促銷
  • 建一個(gè)類似b站的網(wǎng)站多少錢百度用戶服務(wù)中心官網(wǎng)電話
  • 做搞笑視頻網(wǎng)站靠神魔賺錢好的競(jìng)價(jià)推廣外包公司
  • 2018網(wǎng)站外鏈怎么做谷歌seo顧問
  • 棗莊網(wǎng)站設(shè)計(jì)淘寶指數(shù)在線查詢
  • 手機(jī)做網(wǎng)站怎么做網(wǎng)站快速收錄工具
  • 做游戲小網(wǎng)站是啥重慶百度seo整站優(yōu)化
  • 企業(yè)公司網(wǎng)站管理系統(tǒng)免費(fèi)建站免費(fèi)推廣的網(wǎng)站
  • 在網(wǎng)站插入微博靜態(tài)的網(wǎng)頁(yè)出的來到服務(wù)器出不來網(wǎng)站建設(shè)流程圖
  • 創(chuàng)意經(jīng)濟(jì)型網(wǎng)站建設(shè)個(gè)人網(wǎng)站推廣怎么做
  • 直銷軟件網(wǎng)站開發(fā)網(wǎng)站權(quán)重怎么提高
  • 新聞網(wǎng)站建設(shè)項(xiàng)目可行性報(bào)告網(wǎng)站媒體推廣方案
  • 上海門戶網(wǎng)站制推薦友情鏈接
  • 湖南seo丈哥seo博客
  • 返利網(wǎng)站制作最新病毒感染
  • 網(wǎng)站標(biāo)簽名詞搜索排名優(yōu)化軟件
  • 會(huì)python做網(wǎng)站seo優(yōu)化前景