中國設(shè)計聯(lián)盟官網(wǎng)短視頻入口seo
????????各位朋友大家好,我是小C哈哈哈,很高興認(rèn)識大家,在這里,我會將一些枯燥難懂的數(shù)學(xué)和算法知識以圖片或動畫的形式通俗易懂的展現(xiàn)給大家,希望大家喜歡。
? ? ? ? 線性代數(shù)中的矩陣特征值與特征向量這兩個基本概念總是讓很多人摸不著頭腦,😄數(shù)學(xué)還是一如既往的晦澀難懂(ps: 放過我吧!)🍗。今天我們就以通俗的語言來講解一下它們到底是什么?
? ? ? ? 在講解矩陣特征值與特征向量之前,我們先來介紹一下幾個基本的概念🌏。
? ? ? ? 映射🏠:指的是自變量集合到因變量集合的相互"對應(yīng)關(guān)系"。
? ? ? ? 矩陣可以完成一個向量空間到另一個向量空間的映射,怎么理解呢?看下圖,某向量x1經(jīng)過矩陣A映射后變成了Ax1,某向量x2,經(jīng)過矩陣A映射后變成了Ax2。
? ? ? ?在上圖中,映射前的x1與其對應(yīng)的映射后的向量Ax1不在一條直線上,而映射前的x2與其對應(yīng)的映射后的向量Ax2在同一條直線上,這種映射前后在同一條指向上的向量,就稱為特征向量。?
? ? ? ?且這里的矩陣A對x2只起到了伸縮作用 ,那么Ax2就可以表示為λx2,這里的λ就稱為矩陣A的特征值,x2稱為此特征值對應(yīng)的特征向量。
? ? ? ?也就是說,非零向量x滿足Ax =?λx,那么λ就稱為矩陣A的特征值,x稱為矩陣A對應(yīng)于特征值λ的特征向量。
?